Summary of Core Facilities

Cognitive Function

Object Recognition

Object Placement

Social Discrimination Memory

Spontaneous Alternation

• Morris Water Maze

• Sensorimotor gaiting

• Radial Arm Maze

• Conditioned Taste Aversion

Labyrinth Maze

Affective / Emotional Behaviors

Social Interaction

Social Preference

Transmission of Food Preferences

Reproductive and mating behavior

Open Field

Marble Burying

Elevated Plus Maze

• Light/Dark Box

• Acoustic Startle

Porsolt (Forced Swim) Test

Maternal behavior

Novelty Supression of Feeding



Tests of Analgesia

Von Frey

Cold Tail Flick


Sensorimotor Function

Open Field


Grip Strength

• Gait analysis and toe spread

Balance Beam

• Visual Placing

• Visual Cliff

• Pupil dilation

Tape removal test



Functional Observation Battery

Estrous Cycle Staging

• Behavioral Tracking software

• Conditioned Place Preference

• Grooming

• Stereotypies

Developmental milestones (pups)

Homing (pups)

Play (juvenile)


Forced Swim

| Home | Overview | Contact Us | Calendar | Policies | Summary of Tests | Data Sheets| Protocols | Forms | Links | Downloads |

| Albert Einstein College of Medicine | Neuroscience Dept | Animal Institute | Shared Facilities Home Page || Keys |

This is a test of behavioral “despair” or learned helplesssness [1, 2]. Essentially, a rodent is put in a tank of water from which there is no escape. The typical pattern of behavior is that the animals struggle and/or swim for some period of time. Eventually the animals “give up” and float. The latency to floating and the total time of floating are the typical measured parameters. While this may seem, at first glance, anthropomorhism, the test has been extensively validated. Firstly, it is sensitive to and predictive of the success of anti-depressants [3-9]. Secondly, many of the circumstances thought to promote depression in humans (unpredictable chronic stress, maternal and/or social isolation) also induce behavioral “despair” in rodents [5, 10-19]. Lastly, the physiological responses, the brain regions and underlying mechanisms regulating behavior is this test has similarity to those found in humans [2, 5, 10, 15, 20-32] and to other animals assays of depression [5, 30, 33, 34]. .

1. Porsolt, R.D., Anton, G., Blavet, N., and Jalfre, M., Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol, 1978. 47(4): p. 379-91.

2. Porsolt, R.D., Animal model of depression. Biomedicine, 1979. 30(3): p. 139-40.

3. Karpa, K.D., Cavanaugh, J.E., and Lakoski, J.M., Duloxetine pharmacology: profile of a dual monoamine modulator. CNS Drug Rev, 2002. 8(4): p. 361-76.

4. Porsolt, R.D., Bertin, A., and Jalfre, M., "Behavioural despair" in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol, 1978. 51(3): p. 291-4.

5. Willner, P., Animal models of depression: validity and applications. Adv Biochem Psychopharmacol, 1995. 49: p. 19-41.

6. Harkin, A., Kelly, J.P., McNamara, M., Connor, T.J., Dredge, K., Redmond, A., and Leonard, B.E., Activity and onset of action of reboxetine and effect of combination with sertraline in an animal model of depression. Eur J Pharmacol, 1999. 364(2-3): p. 123-32.

7. Dulawa, S.C., Holick, K.A., Gundersen, B., and Hen, R., Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology, 2004. 29(7): p. 1321-30.

8. Kusmider, M., Faron-Gorecka, A., and Dziedzicka-Wasylewska, M., Delayed effects of antidepressant drugs in rats. Behav Pharmacol, 2006. 17(8): p. 641-9.

9. Cooper, B.R., Hester, T.J., and Maxwell, R.A., Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. J Pharmacol Exp Ther, 1980. 215(1): p. 127-34.

10. Hwang, B.H., Kunkler, P.E., Tarricone, B.J., Hingtgen, J.N., and Nurnberger, J.I., Jr., Stress-induced changes of norepinephrine uptake sites in the locus coeruleus of C57BL/6J and DBA/2J mice: a quantitative autoradiographic study using [3H]-tomoxetine. Neurosci Lett, 1999. 265(3): p. 151-4.

11. Willner, P. and Mitchell, P.J., The validity of animal models of predisposition to depression. Behav Pharmacol, 2002. 13(3): p. 169-88.

12. Bulduk, S. and Canbeyli, R., Effect of inescapable tones on behavioral despair in Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry, 2004. 28(3): p. 471-5.

13. Friedman, E., Berman, M., and Overstreet, D., Swim test immobility in a genetic rat model of depression is modified by maternal environment: a cross-foster study. Dev Psychobiol, 2006. 48(2): p. 169-77.

14. Boccia, M.L., Razzoli, M., Vadlamudi, S.P., Trumbull, W., Caleffie, C., and Pedersen, C.A., Repeated long separations from pups produce depression-like behavior in rat mothers. Psychoneuroendocrinology, 2007. 32(1): p. 65-71.

15. Pare, W.P., Learning behavior, escape behavior, and depression in an ulcer susceptible rat strain. Integr Physiol Behav Sci, 1992. 27(2): p. 130-41.

16. Lee, J.H., Kim, H.J., Kim, J.G., Ryu, V., Kim, B.T., Kang, D.W., and Jahng, J.W., Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res, 2007.

17. Wann, B.P., Bah, T.M., Boucher, M., Courtemanche, J., Le Marec, N., Rousseau, G., and Godbout, R., Vulnerability for apoptosis in the limbic system after myocardial infarction in rats: a possible model for human postinfarct major depression. J Psychiatry Neurosci, 2007. 32(1): p. 11-6.

18. Ruedi-Bettschen, D., Zhang, W., Russig, H., Ferger, B., Weston, A., Pedersen, E.M., Feldon, J., and Pryce, C.R., Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. Eur J Neurosci, 2006. 24(10): p. 2879-93.

19. Hoshaw, B.A., Evans, J.C., Mueller, B., Valentino, R.J., and Lucki, I., Social competition in rats: cell proliferation and behavior. Behav Brain Res, 2006. 175(2): p. 343-51.

20. Porsolt, R.D., Bertin, A., Blavet, N., Deniel, M., and Jalfre, M., Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol, 1979. 57(2-3): p. 201-10.

21. Kostowski, W., Danysz, W., Plaznik, A., and Nowakowska, E., Studies on the locus coeruleus system in an animal model for antidepressive activity. Pol J Pharmacol Pharm, 1984. 36(5): p. 523-30.

22. McKinney, W.T., Animal models of depression: an overview. Psychiatr Dev, 1984. 2(2): p. 77-96.

23. Willner, P., The validity of animal models of depression. Psychopharmacology (Berl), 1984. 83(1): p. 1-16.

24. Jesberger, J.A. and Richardson, J.S., Animal models of depression: parallels and correlates to severe depression in humans. Biol Psychiatry, 1985. 20(7): p. 764-84.

25. Kostowski, W., Possible relationship of the locus coeruleus--hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs. Pol J Pharmacol Pharm, 1985. 37(6): p. 727-43.

26. Overstreet, D.H., Selective breeding for increased cholinergic function: development of a new animal model of depression. Biol Psychiatry, 1986. 21(1): p. 49-58.

27. Arletti, R. and Bertolini, A., Oxytocin acts as an antidepressant in two animal models of depression. Life Sci, 1987. 41(14): p. 1725-30.

28. Pare, W.P., Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol Behav, 1989. 46(6): p. 993-8.

29. Flugy, A., Gagliano, M., Cannizzaro, C., Novara, V., and Cannizzaro, G., Antidepressant and anxiolytic effects of alprazolam versus the conventional antidepressant desipramine and the anxiolytic diazepam in the forced swim test in rats. Eur J Pharmacol, 1992. 214(2-3): p. 233-8.

30. Gil, M., Marti, J., and Armario, A., Inhibition of catecholamine synthesis depresses behavior of rats in the holeboard and forced swim tests: influence of previous chronic stress. Pharmacol Biochem Behav, 1992. 43(2): p. 597-601.

31. Hattori, S., Hashimoto, R., Miyakawa, T., Yamanaka, H., Maeno, H., Wada, K., and Kunugi, H., Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav Brain Res, 2007.

32. White, D.A., Kalinichev, M., and Holtzman, S.G., Locomotor response to novelty as a predictor of reactivity to aversive stimuli in the rat. Brain Res, 2007.

33. Pare, W.P., Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav, 1994. 55(3): p. 433-9.

34. Kostowski, W., Dyr, W., Krzascik, P., Jarbe, T., and Archer, T., 5-Hydroxytryptamine1A receptor agonists in animal models of depression and anxiety. Pharmacol Toxicol, 1992. 71(1): p. 24-30.

43. Willner, P., Animal models of depression: an overview. Pharmacol Ther, 1990. 45(3): p. 425-55.